Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Topics in Antiviral Medicine ; 30(1 SUPPL):94, 2022.
Article in English | EMBASE | ID: covidwho-1880132

ABSTRACT

Background: It is imperative to investigate novel, broadly conserved coronavirus immunogens as new SARS-CoV-2 variants of concern are continually emerging. The goal of this study was to generate a broadly protective long-term vaccine candidate against potential new variants of SARS-CoV-2 and novel, outbreak coronaviruses. The vaccine immunogen spanned portions of the highly conserved RNA replication machinery (nsp12 and nsp13) (CoV.Con). The vaccine was packaged into a rhesus adenoviral vector (RhAd52.CoV.Con) with the goal of generating robust long-lived CD8+ T-cell responses. Methods: The CoV.Con immunogen was generated by aligning coronavirus sequences to determine the most conserved region. ACE2 carrier and BALB/c mice were immunized intramuscularly with 109 RhAd52.CoV.Con and boosted four weeks later. Splenocytes were harvested four weeks after boost. Cellular immunity was determined through ELIspot and intracellular cytokine stain (ICS). BALB/c mice were primed and boosted with RhAd52.CoV.Con. Four weeks post boost mice were challenged intranasally with mouse adapted SARS-CoV-2. Protection was measured by weight loss and plaque assay. Results: Four weeks post RhAd52.CoV.Con boost immunization, ACE2 carrier and BALB/c mice developed cellular immunity as shown by ELIspot (Fig 1a) and ICS. ACE2 carrier mice cellular immunity showed bias toward nsp12 while BALB/c mice showed nsp13 preference. BALB/c mice were primed and boosted with RhAd52.CoV.Con. Four weeks after boost mice were challenged with mouse adapted SARS-CoV-2. RhAd52.CoV.Con was compared against and combined with a suboptimal dose of RhAd52.S.pp at 4 and 8 weeks post injection. Protection against weight loss (Fig 1b) and viral load (Fig 1c) was minimal although increased RhAd52.S.pp protection was observed from 4 to 8 weeks post immunization. Increased RhAd52.S.pp protection corresponded to increased spike antibody binding and neutralizing titers. Conclusion: Our work investigates a highly conserved coronavirus immunogen, CoV.Con, demonstrating immunogenicity in two mouse strains. While RhAd52. CoV.Con protection in the mouse model was minimal it demonstrates a schema for generating coronavirus immunogens that can protect against multiple different viruses. This work takes the first steps towards generating a long-lived broadly protective T-cell coronavirus vaccine.

SELECTION OF CITATIONS
SEARCH DETAIL